MTH 260–Probability and Statistics I COURSE OBJECTIVES

1. Probability

- a. Probability and Inference
 - i. Compute and graph relative frequencies.
- b. A Review of Set Notation
 - i. Write and use expressions and Venn diagrams involving unions, intersections, and complements.
 - ii. Define prescribed subsets of a given set according to given conditions.
 - iii. List points in prescribed subsets of a given set.
- c. A Probabilistic Model for an Experiment: The Discrete Case
 - i. State the following theorems / define the terms, and apply them to examples.
 - Experiment
 - simple event
 - sample space
 - discrete sample space
 - event
 - probability axioms
 - DeMorgan's Laws
 - ii. Given an experiment:
 - List the sample points (i.e. define the sample space).
 - Assign a reasonable probability to each sample point.
 - Using the sample space, find prescribed probabilities using terms like "at least," "at most," and "exactly."
 - Using the sample space, find probabilities defined by expressions such as P(A), P(B), $P(A \cup B)$, $P(A \cap B)$, $P(\bar{A} \cup B)$.
- d. Calculating the Probability of an Event: The Sample-Point Method
 - i. Outline the following steps (The Sample-Point Method) and apply them to an example to find the probability of an event.
 - Define the experiment and clearly determine how to describe one simple event.
 - List the simple events associated with the experiment and test each to make certain that it cannot be decomposed.
 - Assign reasonable probabilities to the sample points in the sample space, making certain that the probabilities are nonnegative and sum to 1.
 - Find the probability of an event by summing the probabilities of the sample points in the event.
- e. Tools for Counting Sample Points
 - i. State the following theorems / define the terms, and apply them to examples.
 - Multiplication Principle of counting
 - Number of ways of filling r positions with n distinct objects
 - Number of ways of partitioning n distinct objects into k distinct groups containing n_1, n_2, \ldots, n_k objects, respectively, where each object appears in exactly one group and the sum of the n_i is n.
 - Number of combinations of n objects taken r at a time

- Number of unordered subsets of size r chosen (without replacement) from n available objects
- f. Conditional Probability and the Independence of Events
 - i. State the following theorems / define the terms, and apply them to examples.
 - Conditional probability of an event
 - Independence of events
- g. Two Laws of Probability
 - i. State the following theorems / define the terms, and apply them to examples.
 - The Multiplicative Law of Probability (for the intersection of two events)
 - The Addition Law of Probability (for the union of two events)
- h. Calculating the Probability of an Event: The Event-Composition Method
 - i. Give a summary of the event-composition method including:
 - Define the experiment.
 - Visualize the nature of the sample points.
 - Write a probability expression for the event of interest.
 - Apply the additive and multiplicative laws of probability to the compositions of interest.
- i. The Law of Total Probability and Bayes' Rule
 - i. State the following theorems / define the terms, and apply them to examples.
 - Partition of a sample space
 - For a partition $\{B_1, B_2, ..., B_k\}$ of a sample space S such that $P(B_i) > 0$ for i = 1, ..., k; for any event A, the probability $P(A) = \sum_{i=1}^k P(A|B_i)P(B_i)$.
 - Bayes' Rule
- 2. Discrete Random Variables and Their Probability Distributions
 - a. The Probability Distribution of a Discrete Random Variable
 - i. State the following theorems / define the terms, and apply them to examples.
 - Discrete random variable
 - P(Y = y) is the sum of the probabilities of all sample points in a sample space S that are assigned to the value y.
 - Probability distribution of a discrete random variable as a formula, table, or graph
 - Criteria for a discrete probability distribution
 - b. The Expected Value of a Random Variable or a Function of a Random Variable
 - i. State the following theorems / define the terms, and apply them to examples.
 - Expected value of a discrete random variable
 - Expected value of g(Y) for a discrete random variable Y and a real-valued function g.
 - Variance and standard deviation (in terms of expected value)
 - Expected value of a constant
 - Linearity of expected value
 - c. The Binomial Distribution
 - i. State the following theorems / define the terms, and apply them to examples.

- Binomial experiment properties
- Binomial distribution based on n trials
- Mean and variance of a binomial random variable
- d. The Geometric Probability Distribution
 - i. State the following theorems / define the terms, and apply them to examples.
 - Geometric probability distribution of a random variable
 - Mean and variance of a geometric distribution
- e. The Hypergeometric Probability Distribution
 - i. State the following theorems / define the terms, and apply them to examples.
 - Hypergeometric probability distribution
 - Mean and variance of hypergeometric variables
- f. Poisson Probability Distribution
 - i. State the following theorems / define the terms, and apply them to examples.
 - Poisson random variable
 - Mean and variance of Poisson random variables
- g. Moments and Moment-Generating Functions
 - i. State the following theorems / define the terms, and apply them to examples.
 - ullet kth moment of a random variable Y taken about the origin ${\mu_k}'$
 - *k*th moment of a random variable *Y* taken about the mean
 - Moment generating function
 - If a moment generating function m(t) exists, then $m^{(k)}(0) = \mu_k'$ for any positive integer k.
- h. Tchebysheff's Theorem
 - i. State the following theorems / define the terms, and apply them to examples.
 - Tchebysheff's Theorem
- 3. Continuous Variables and Their Probability Distributions
 - a. The Probability Distribution for a Continuous Random Variable
 - i. State the following theorems / define the terms, and apply them to examples.
 - Cumulative distribution function
 - Properties of a distribution function
 - Continuous distribution function
 - Probability density function
 - Properties of a density function
 - Quantiles
 - If a random variable Y has density function f and a < b, then the
 probability that Y falls between a and b is the [Riemann] integral of f
 from a to b.
 - b. Expected Values for Continuous Random Variables
 - i. State the following theorems / define the terms, and apply them to examples.
 - Expected value of a continuous random variable
 - Expected value of g(Y) for a continuous random variable Y and a real-valued function g.
 - Variance and standard deviation (in terms of expected value)

- Expected value of a constant
- Linearity of expected value
- c. The Uniform Probability Distribution
 - i. State the following theorems / define the terms, and apply them to examples.
 - Uniform probability distribution
 - Parameters of a density function
 - Mean and variance of a uniform random variable
- d. The Normal Probability Distribution
 - i. State the following theorems / define the terms, and apply them to examples.
 - Normal probability distribution
 - Mean and variance of a normal random variable
- e. The Gamma Probability Distribution
 - i. State the following theorems / define the terms, and apply them to examples.
 - Gamma distribution
 - Mean and variance of a random variable with gamma distribution
 - Chi-square distribution
 - Mean and variance of chi-square random variables
 - Exponential distribution
 - Mean and variance of exponential random variables
- 4. Multivariate Probability Distributions
 - a. Bivariate and Multivariate Probability Distributions
 - i. State the following theorems / define the terms, and apply them to examples.
 - Joint/bivariate probability function
 - For two discrete random variables Y_1, Y_2 with joint probability function $p(y_1, y_2)$, the function p is nonnegative and the sum of all $p(y_1, y_2)$ is 1.
 - Joint distribution function
 - Jointly continuous random variables
 - Joint probability density function
 - Properties of joint distribution functions
 - Properties of joint density functions
 - b. Marginal and Conditional Distributions
 - i. State the following theorems / define the terms, and apply them to examples.
 - Marginal probability functions
 - Marginal density functions
 - Conditional discrete probability function
 - Conditional distribution function
 - Conditional density
 - c. Independent Random Variables
 - i. State the following theorems / define the terms, and apply them to examples.
 - Independence and dependence with distribution functions
 - If Y_1 , Y_2 are both discrete (or both continuous) random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions

- $p_1(y_1)$, $p_2(y_2)$, then Y_1 and Y_2 are independent if and only if $p(y_1, y_2) = p_1(y_1) p_2(y_2)$ for all pairs of real numbers (y_1, y_2) .
- The previous result holds for a joint density f where the support of f is a compact rectangle, and any nonnegative functions g and h may be used in place of p_1 and p_2 , respectively.
- d. The Expected Value of a Function of Random Variables
 - i. State the following theorems / define the terms, and apply them to examples.
 - Expected value of a function of finitely many discrete [continuous] random variables
- e. Special Theorems
 - i. State the following theorems / define the terms, and apply them to examples.
 - Linearity of expected value for functions of two random variables
 - Multiplicative property of expected value for independent random variables
- f. The Covariance of Two Random Variables
 - i. State the following theorems / define the terms, and apply them to examples.
 - Covariance of two random variables
 - Properties of covariance
 - Independent random variables have zero correlation.
- g. The Expected Value and Variance of Linear Functions of Random Variables
 - i. State the following theorems / define the terms, and apply them to examples.
 - Properties of expected value, variance, and covariance on linear combinations of random variables
- 5. Sampling Distributions and the Central Limit Theorem
 - a. The Central Limit Theorem
 - i. State the following theorems / define the terms, and apply them to examples.
 - Central limit theorem for finitely many independently identically distributed random variables
 - b. The Normal Approximation to the Binomial Distribution
 - i. Given an example involving a binomial distribution, apply the normal approximation.